[1]姚干勤.基于风格认知的客车造型特征重用推理方法研究[J].扬州职业大学学报扬州教育学院学报,2022,(04):42-46.
 YAO Gan-qin.Research on Reusing Reasoning Method of Coach Modeling Features Based on Style Cognition[J].Journal of Yangzhou Polytechnic College,2022,(04):42-46.
点击复制

基于风格认知的客车造型特征重用推理方法研究()
分享到:

《扬州职业大学学报》《扬州教育学院学报》[ISSN:1008-3693/CN:32-1529/G4]

卷:
期数:
2022年04期
页码:
42-46
栏目:
《扬州职业大学学报》刊期目录
出版日期:
2022-12-01

文章信息/Info

Title:
Research on Reusing Reasoning Method of Coach Modeling Features Based on Style Cognition
文章编号:
1008-3693(2022)04-0042-05
作者:
姚干勤
(扬州职业大学,江苏扬州225009)
Author(s):
YAO Gan-qin
(Yangzhou Polytechnic College,Yangzhou 225009,China)
关键词:
造型风格 几何特征 粗糙集 属性约简 设计规则
Keywords:
modeling style geometrical characteristic rough set attribute reduction design rules
分类号:
U 469.1
文献标志码:
A
摘要:
为提升设计效率和可靠性,提出一种基于风格认知的客车造型特征重用推理方法。从客车造型设计规则推理出发,一方面提取优秀案例中的风格认知感性知识,另一方面提取案例中的特征属性理性知识,利用遗传算法对设计决策表进行属性约简,通过设计规则筛选得到强规则集。设计实践表明,这种基于设计规则推理的方法能够促进设计方案的创新,满足客户对造型风格的需求,较以往主观经验性设计方法具有更强的针对性和指导性。
Abstract:
In order to improve the efficiency and reliability of design, a reusing reasoning method of coach modeling feature based on style cognition is proposed. Based on the rule reasoning of coach modeling design, both the perceptual knowledge of style cognition and the conceptual knowledge of feature attributes in excellent cases is extracted. The attributes in decision-making table of design are then reduced by using genetic algorithm, and a strong rule set is obtained through the screening of design rules. The design practice shows that this method based on design rule reasoning can meet customer needs in modeling style and innovation of design scheme, and is more targeted and instructive than the previous subjective empirical design method.

参考文献/References:

[1] 孙志学.产品敏捷工业设计过程创意知识获取方法[J].机械设计,2015(3):115-118.
[2] 寸文哲.面向产品造型风格的用户认知模式及量化模型研究[J].图学学报,2017(6):869-875.
[3] 彭海松,苟锐.基于意象尺度的公交车驾驶台造型风格认知研究[J].工业设计,2017(2):100-103.
[4] 刘玲玲.基于多维特征和整体性认知的产品设计方法研究[D].南京:东南大学,2017.
[5] 孙晋博.产品造型原型配置的知识推理方法[J].机械设计,2018(4):106-112.
[6] 刘征宏.面向产品概念设计的隐性知识转化模型构建及重用研究[D].贵阳:贵州大学,2016.
[7] 苏建宁.设计师和终端用户复合意象造型元素的辨识[J].兰州理工大学学报,2014(6):40-44.
[8] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [C]//International Conference on Learning Representations. San Diego: Computational and Biological Learning Society,2015.
[9] 石夫乾.基于Valence-Arousal的产品内隐情感表示与推理技术研究 [D].杭州:浙江大学,2011.
[10] SHI F Q, SUN S Q, XU J. Employing rough sets and association rule mining in KANSEI knowledge extraction[J].Information Sciences,2012(1): 118-128.
[11] 冯志伟.自然语言处理的形式模型[M].北京:中国科学技术大学出版社,2010.
[12] 何晓群.多元统计分析[M].3版.北京:中国人民大学出版社,2012.
[13] 薛澄岐,张坪,周蕾.基于特征重构的辅助风格设计技术研究[J].东南大学学报(自然科学版),2011(4):734-738.
[14] 马丽莎,吕健,单军军.基于眼动追踪的汽车造型特征线设计方法研究[J].包装工程,2019(4):234-241.
[15] 苗夺谦,李道国.粗糙集理论、算法与应用 [M].北京: 清华大学出版社,2008.
[16] ALEKSANDER O. Discernibility and rough sets in medicine: tools and applications [D]. Trondheim: Norwegian University of Science and Technology, 2004.

备注/Memo

备注/Memo:
收稿日期:2022-07-04
作者简介:姚干勤(1975—),男,扬州职业大学艺术学院教授,博士。
更新日期/Last Update: 1900-01-01